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Generalized Hybrid Orbitals 

E. F. Kirkwood and D. B. Cook 

The Department of" Ckmmistry, The University, Sheffield $3 7HF, UK 

A new set of  generalized hybrid atomic orbitals is proposed for use in the theory 
of  molecular electronic structure. The hybrids have conceptual and (when expan- 
ded in terms of  Gaussian functions) computational advantages over conventional 
hybrids which are essentially adapted to spherically-symmetric environments. 
Formaldehyde is used to illustrate the use of  these orbitals. 
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1. Introduction 

in quantitative theories of molecular electronic structure it has become traditional to 
use a set of  "atom-centred functions" of  the form 

A 
X i = f(rA) Y[n( 0 A, ~A) (1) 

as basic units in the expansion of the molecular wave function. In (1) the Y~ are the 
usual harmonics and J~ is a function of the scalar distance from nucleus A; (/ 'a, 0A, ~bA) 

is a set of  spherical polar co-ordinates local to nucleus A. The reasons for this choice 
are both historical and scientific, principally: 

a) A wave function constructed from functions (1) can be given a convenient valence 
interpretation through the density matrix: the electron density is easily analysed 
into "'atomic" and "overlap" contributions. 

b) Most molecular wave functions are optimized by using the variation principle which 
minimizes the average energy associated with a given form of approximate wave 
function. The largest contribution to the energy of  a molecule is the sum of the 
energies of  the separate atoms and functions like (1) give this energy very welt. 

c) The hydrogen atom orbitals are of the form (1) as are the Hartree-Fock orbitals of  
polyelectronic atoms. 

d) The various molecular integrals arising from the use of  (1) in conjunction with the 
usual non-relativistic Hamiltonian are, in the main, computationally tractable and 
methods for theiI evaluation are well known. 

In practice a molecular wave function is, explicitly or implicitly, expanded as a sum of 
determinants of  some spin-oribtals r 

q~ = E Dka~k (2) 
k 



140 E.F. Kirkwood and D. B. Cook 

where 

~k - det {0i~bj...} (3) 

and the spatial part of the spin-orbitals q~i are either atomic orbitals (linear combina- 
tions of functions (1)) or linear combinations of atomic orbitals. With very few excep- 
tions these atomic orbitals are fixed by the nature of  the atoms in the molecule - they 
are not optimized for a particular molecule. Thus the full burden of the optimization 
of the wave function falls on the linear coefficients D k and the linear coefficients 
determining the 4;s in terms of the X'S. If the set of AOs occupied in the ground state 
of the molecule proves qualitatively or quantitatively inadequate to expand a molecu- 
lar wave function then other atom-based functions are added to the basis - typically 
"polarization functions" of higher l and m values. This concentration of effort on the 
linear optimization has two aspects. In the first place it is technically easier to extend 
the number of functions like (1) rather than to optimize the form of (1). Secondly, 
problems of interpretation quickly become acute - how are the contributions to a 
molecular charge density from "AOs" unoccupied in the separate atoms to be inter- 
preted? 

It is a matter of common knowledge that the use o f ( l ) ,  (2) and (3) can be made to 
expand any molecular wave function to an arbitrary degree of accuracy by using long 
enough expansions of the ~i and the q~k- This fact provides the theoretical under- 
pinning for the standard methods. However, the use of (1), (2) and (3) in an unrestric- 
ted way has the rather unfortunate effect of replacing a scientific problem (the inter- 
pretation of valence) by a mathematical one (the best series expansion of the solution 
of a differential equation). The natural question to ask is: 

Does the use of (1), (2) and (3) constitute a mathematical approach to the prob- 
lem of molecular electronic structure which is adapted to the description of the 
physical processes occurring on bond formation ? 

The electronic re-distribution occurring on bond formation might be qualitatively 
grouped into (at least) the following three effects: 

a) Atomic (or orbital) contraction or expansion on the approach of another atom. 
b) Destruction of atomic spherical symmetry. 
c) Inter-atomic electron redistribution. 

These processes are characteristic of each bond terminating at a given atom. Now, 
since expansion (2) is capable of being made arbitrarily accurate these effects must be 
contained in a comparison of a computed accurate molecular wave function and the 
wave functions for the separate atoms. But the nature of the expansion (2) and the 
form of the functions (1) makes the extraction of this information and the assessment 
of effects a), b) and c) rather difficult. 

Taking a specific example, if a "minimal basis" of AOs is used for the calculation of 
the formaldehyde (CH20) molecule then, because of the nature of the AO's, processes 
a) and b) receive almost no consideration. The fixed form off( re)  for each AO means, 
for example, that the contraction (or expansion)of the 2s, 2p AOs of carbon cannot 
take place. Further, the use of the y~n means that the removal of spherical symmetry 
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around the carbon atom is only partially allowed for. The different carbon contri- 
bution to the C-H and C-O o bonds is severely restricted. Only process c) is capable of  
being treated adequately by this method and it may well be that by constraining the 
AOs not to change the numerical magnitude of effect c) is over- or under-estimated. 
The problems can be: overcome to some extent by the use of  additional s, p, d AOs; 
atom-based functions. The use of additional s-type functions will enable a study of  
the contraction of  the carbon 2s AO to be made by comparison of  the relative values 
of  coefficients in the molecule and in the separate atom. The loss of  spherical sym- 
metry can similarly be studied by the addition of several sets of  AOs with different 
radial functions - e.g. to allow the C-H and C-O o bonds to have different carbon AO 
contributions. But all this is rather pedestrian: the use of  a set of functions which are 
determined by a spherically symmetrical potential (factorizable into the form (1)) is 
clearly not at all well adapted to the study of the processes occurring on bond forma- 
tion. There are no parameters in (1), for example, which measure orbital contraction 
effects - everything hinges on comparisons of linear coefficients which contain infor- 
mation about all the effects a), b) and c). What is more the use of  extended AO bases 
is often very time-consuming and numerically unstable. 

A more useful and chemically interpretable approach would be one which uses atom- 
based functions which, for example, depend explicitly on direction in space and con- 
tain in their functional forms the possibility of introducing effects a), b) and c) in a 
physically transparent way. Conventional hybridization goes some way towards meet- 
ing these criteria and suitable atomic functions suggest themselves when the mathe- 
matical reasons for the use of  (1) are reviewed. 

2. Generalized Hybrid Orbitals 

The conventional treatment of  the Schr6dinger equation for the hydrogen atom is to 
use a system of  spherical polar co-ordinates (r, 0, q~) and hence separate the three- 
dimensional partial differential equation into equations for functions of  r, 0 and O 
separately. The solutions are well known and take the form (1), in particular 

r m = Rnt(r)Y~l (0, O) (4) 

where 

2/+1 , 
Rnl(r) = Ln+ l (ar/n) exp ( -r /n)r  l (5) 

�9 2 l +  1 and the Laguerre polynomials (Ln+l )  ensure orthogonality for AOs with the same 
values of  l and m. Naturally, the spherical polar system is the most appropriate co- 
ordinate system to use for an isolated atom where there are no preferred directions in 
space. However, an atom in a molecule does have at least one preferred direction - the 
axis whose direction coincides with the bond direction. Thus it is of  interest to see if 
there are solutions of the hydrogen atom Schr6dinger equation in systems of  co- 
ordinates which reflect the existence of a preferred direction in space. There are two 
obvious candidates for such a co-ordinate system; cylindrical co-ordinates (r, z, 0) and 
parabolic co-ordinates (~', 7, ~). The hydrogen atom equation does not separate in 
cylindrical co-ordinates but it does separate in parabolic co-ordinates. The solutions of  
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the hydrogen atom Schr6dinger equation in parabolic co-ordinates are used in the 
theory of the Stark effect where an electric field is the source of the preferred direc- 
tion. The solutions are [1 ], apart from normalization, 

e (S~l) Ln I +m (e~)Ln2+m(e~) (6) Onxn~m(f,~,O)=exp(+-imO)exp [ ~-(~'+r?)] ~ m/2 m m 

wherenl ,n2  = 1 , 2 , . . . ; m  = 0 , + 1 , + 2 , . . . ; n = n  l + n 2 ; a n d e = Z / n .  

When plotted [1] these functions have a characteristic "directional hybrid" appearance. 
The asymptotic folvn of (6), for large values of the argument, is 

Onln2m ~ hnl n2m (r, z) exp ( -Zr /n)  exp (imp), 

a function of the familiar "mixed" polar/Cartesian co-ordinates. 

Now in the theory of polyelectronic atoms (and the conventional theory of molecular 
electronic structure) functions of the same general form are used for AOs but the rigid 
form of the Laguerre polynomials is abandoned in favour of a more flexible variational 
form and the orbital exponent 1In is replaced by a variational parameter 8. This yields 
the usual expression for AOs - a linear combination of STOs: 

r = yr~ (0, ~) ~ cir ~i exp (-6jr). (7) 

Thus the general form of the hydrogen atom AOs suggests a variational form for the 
AOs of isolated atoms. 

A similar transition from the form (6) suggests an "AO-in-molecule" form of 

X = ~ hi(r, z) exp ( 6iF ) (8) 
i 

where hi is a function defining the general form of an individual hybrid orbital and 
6i is an orbital exponent for that hybrid. Taking the simplest example, the usual 
hybrids formed from a simple linear combination of the 2s, 2p AOs are 

X = a2s + b2po 

which can be written in the form (8) as: 

{ air \ 

for 2s, 2p with the same exponent (the x/~ factor is included to ensure that N is 
dependent only on 8). Thus, in the CH20 example the "'sp 2'' hybrids involved in the 
C-H and C-O o bonds could each be of the general form (9) with different values of 
ai, bi and 6 i. The form of (8) can, of course, be chosen so that the generalized hybrid 
orbitals go over smoothly into the ordinary AOs as an atom is removed from a molecu- 
lar environment. In particular, as the carbon atom is removed from CH20 the values 
of ai, b i and 6 i vary continuously until, at infinite separation, they describe the usual 
2s, 2p set. For CH;O the r MO is normally described by a linear combination of the 
2p~ AOs; however, there is nothing in principle against using a more general form of 
7r AO which, although having conventional symmetry, concentrates density into the 
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internuclear region. That is, using (6) as a guide, n AOs do not need to be symmetrical 
in a plane perpendicular to the molecular plane passing through each atom. 

The use of a set of functions of this type enables the physical processes outlined 
earlier to be correlated in a strai~tforward way to the values of the parameters ai, bi 
and 5 i. Thus the change in 5 i (from the separate atom value to the molecular value) 
measures the individual orbital contractions (or expansions) on bond formation. The 
differences among a set of 5 i of orbitals on a given nucleus also measure the effects 
of the bonded atoms and so incorporate deviations from spherical symmetry. The 
ai, b i coefficients measure the relative s and p contributions to each bond. There is, of 
course, no reason why the ai, bi should be chosen to be constrained by the usual rule 
that hybrids on the same centre should be orthogonal since the use of a separate 6 i 
for each hybrid will destroy the conventional orthogonality requirement. 

A set of generalized hybrids of the form (9) cannot be generated by an orthogonal 
transformation from a single set of separate-atom AOs (2s, 2p). Thus the choice 
of optimum hybrids (by choice of the at, bi and 5i) becomes a degree of freedom to be 
optimized even in the single-determinant MO model. This latter effect is in line with 
chemical intuition and with the results of models of electronic structure more general 
than MO. In VB methods and separate electron-pair theories the choice of an optimum 
hybrid basis is a very important consideration and (in the conventional hybrid theory) 
an optimum linear lransformation among the AO set is used to define these hybrids 
(unless all possible VB structures are included). We can therefore define and use, 
within the MO model, optimum hybrids which are of qualitative and quantitative 
value - they are not simply the result of a formal, but numerically worthless, trans- 
formation. 

3. Computational Considerations : Expansion Methods 

The definition and use of any set of basis orbitals for the elucidation of molecular 
electronic structure can only be of quantitative value if methods are developed 
for the computation of the molecular integrals 

and (10) 

~ dV l S dv2xi( l )xj( l )~-12Xk(2 )Xl(2) 

which arise in the solution of the matrix equations of any orbital-basis theory - MO, 
VB/CI. The form of the ~(i which we have suggested has an STO-like exponential 
factor and all the difficulties associated with the calculation of many-centre STO 
integrals occur again if (8) is used as it stands. In fact the computational difficulties 
are made more acute by the unusual nature of the "angular functions". However, the 
general qualitative forms of the hybrid orbitals suggests an alternative approach. 

Hybrid orbitals of the form (8) consist of a number of "lobes" of different sign; in 
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particular the simplest hybrids with n = 2 in (9) consist of two lobes with centres 
along an axis containing the parent nucleus. By finding the line of  nodes separating 
these positive and negative lobes it is easy to find the centroids of  the lobes as a func- 
tion of ai, bi and 6i of  (9) (or a more general hybrid (8)). In fact, for n = 2, the cen- 
troid of  the major (positive) lobe is 

5x/3  ( - a  4 + laaZb 2 + 24~/3ab 3 + 2764l  

24b6i I -a ~ + 3 ~ a 2 b + ~ a b 2 + ; ~ / ~  ~ , J (11) 

atomic units along the hybrid-nucleus axis and the minor (negative) lobe is 

5x'~33 [ a4-  18a2b2 + 24x/~-ab3 - 27b4 / 
(12) 

2-4-b-Si[_a 3 + 3X/fa2b _ 9ab 2 + 3x/~-b3-J 

atomic units in the opposite direction. We can now use a function to represent each 
lobe of the hybrid: spherical Gaussian functions are the obvious candidates. Placing 
a spherical Gaussian function on each lobe centroid, we can seek the opt imum a in 

(2a-) 3/4exp (--~r2) 

for each lobe as a function ofai, b i and 6 i for each hybrid. Now the "radial" factors 
of  the hybrid and the centroid of each lobe are determined by 6 i. It is therefore 
natural to ask if there is a "scaling relation" for the Gaussian lobe fits to the hybrids 
analogous to the familiar scaling relation for Gaussian fits to STO functions. It turns 
out that there is - it is only necessary to fit the hybrid lobes for one value of 6i (6i = 
1.0, usually for convenience) and the fits to all other hybrids of the same form (same 

ai, bi) are determined. (It  must be said that if no scaling relation could be found this 
would have been a severe limitation on the use of (9) - large amounts of  numerical 
data would be needed in order to optimize a particular 8i). We can therefore perform 
(e.g.) 2-term (one spherical Gaussian per lobe) fits once and for all for the principal 
types of hybrid: 

X/~ ,,sp 3 ,, a i = _ .  b i = ; 
2 '  

=~/3 "sp2" ai = 1 ; b i ; 

ai=%/3 ; bi= ~ 2  ; "sp" 

ai = X/~; bi = 0; "S" 

a i=O b i= 1; "p"  

If greater numerical accuracy is required the length of the Gaussian fit to each lobe 
can be increased - the same scaling theorem is applicable to the opt imum exponents ~. 
Table 1 lists the 2-term fits for these main (n = 2) hybrid types. The opt imum expo- 
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Table 1. Two-term Gaussian lobe fits to (n = 2) s,p hybrid orbitals 

145 

Hybrid Type Centroids a Exponents Coefficients Overlap b 

p • 0.200999 • 0.953322 
0.200999 

sp 1.514156 0.150465 1.024623 0.954640 
-2.235844 0.311268 -0.217884 

sp 2 1.619845 0.154404 1.037945 0.961192 
2.130155 0.201888 -0.409704 

sp 3 1.666667 0.161292 1.022153 0.958790 
0.208333 0.203659 -0.476756 

a Distances in Bohrs throughout. 

b Overlap with actual STO hybrid of the given type. 

nents are listed for 61- = 1.0 in (9); for exponent 6i the opt imum Gaussian exponents 
are obtained by multiplying the listed values by 62. The centroids of  the hybrid lobes 
on which the Gaussian functions are centred are given by (11) and (12). Using these 
expansions of  the hybrid orbitals, the molecular integrals (10) are trivially easy to 
compute;  they reduce to linear combinations of  the standard forms for s-type Gaussian 
functions [2]. 

4. Appl icat ions  : The Formaldehyde  Molecule  

The formaldehyde molecule has a rather varied electronic structure for a simple organic 
molecule: C-H bonds, a polar C-X o bond, a ~ bond and lone pairs. This molecule 
shows, therefore, something of the directionally-dependent radial density (particularly 
at the carbon atom) which is only poorly described by the use of  conventional spheri- 
cally-based atomic orbitals. A calculation has therefore been performed using a basis of 
generalized hybrids fitted by the expansions of  Table 1 (a 2-term conventional Gaussian 
expansion was used for the carbon and oxygen ls "cores").  Single-term ls functions 
were used for the single-lobe hydrogen ls functions. Thus the generalized hybrid basis 
for CH20 is: 

~2 : 

~3 : 
q5 4 : 

~s : 

~6 : 

q~7 : 

~8 : 

~10 : 

~11 : 

~12 : 

ls on carbon (exponent 61) 

sp2- type  on carbon - CO 0 bond - (exponent 6 2) 

sp2-type on carbon) .  
- CH 0 bonds - / (exp~ 63) 

/ 

AO on carbon (exponent 64) 

ls on oxygen (exponent 6s) 

sp2-type on oxygen - OC 0 bond - (exponent 66) 

sp2-type on xygen} 
- lone pairs ? (exponent 67) 

7r AO on oxygen (exponent 6 s) 

hydrogen ls AOs (exponent 6 9) 
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All nine exponents were optimized by minimizing the total electronic energy of  a 

standard SCFMO calculation. The minimization procedure used was a quasi-Newton 
method [3] which constructs approximations to the gradient and Hessian matrices. 
Table 2 shows the results of the exponent  optimization.  In order to have a strict com- 
parison of  hybrids of  the form (9) the "separate a tom" 5's are, in fact, the best atomic 

2s and 2p functions constrained to have the same exponent  t. Table 3 gives the effect 
of the optimization on the total  energy and the individual orbital energies. 

It is evident from Table 2 that the hybrids involved in o bonds contract  quite markedly 
on bond formation and that this contraction is dependent  on the type of  bond in which 
a "given hybr id"  occurs (C-H or C-O in our case). The oxygen lone-pair hybrid expo- 

nents are essentially unchanged since these orbitals are not involved to any great extent  
in the changes occurring on molecule formation and so their form is determined by 
the local "a tomic"  potential.  In contrast, however, the exponents of both 7r AOs 
decrease on molecule formation showing that these expand on bond formation. It is 
worth noting at this point  that the 7r AOs change in such a way as to increase bonding 
overlap; 0.152 for the separate-atom AOs, 0.198 for the optimized orbitals. But the 

orbitals contract,  leading to reduced o-o overlap integrals; 0.792 for the CO ~ overlap 

Table 2. Separate atom and molecular 
exponents for CH20 Labela ~ Atom 5 Molecule 

a See text for orbital numbering 

1 5.6727 5.7583 
2 1.5693 1.7301 
3 1.5693 1.8860 
4 1.5693 1.4295 
5 7.6579 7.7893 
6 2.2318 3.7617 
7 2.2318 2.2372 
8 2.2318 2.0632 
9 1.0000 1.0713 

Table 3. Orbital energies for CH20 
Separate Atom 5's Molecule-Optimized ~'s 

-20.5075 -20.3898 
-11.0792 -10.9925 

- 1 . 5 6 4 8  -1.4307 
-0.8534 -0.8105 
-0.5655 -0.5800 
-0.4498 -0.5740 
-0.3293 -0.3076 
-0.2022 -0.1980 

Totalenergy 
-106.9777 -107.1535 

1 Computed for us by Mr. D. Firsht. 
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for separate atom exponents, 0.457 for the optimized molecular exponents. It is clear 
from even these preliminary results (if clarification were required) that chemical bond 
formation is no t  to be correlated with maximum overlap of hybrid orbitals. The 
various physical effects contributing to the re-arrangement of electron density on 
bond formation cannot be reduced to a simple "overlap effect". 

It might be objected that the o orbital contraction effects are an artifact of the calcu- 
lation in the sense that we have used a rather limited expansion of the core orbitals 
and perhaps the o orbitals contract to compensate for this. That this is not so is most 
easily seen by a study of the ~ orbitals based on the oxygen atom of CHaO. The ls 
core AO on oxygen contracts a small amount; the OC sp 2 hybrid contracts but the 
lone-pair sp a hybrids are left  unchanged by the optimization process. If the orbital 
contraction were an artifact connected with the short ls expansion it would surely 
show a uniform tendency to contraction among the o orbitals of that atom. It is, of 
course, easy to verify this conclusion by performing calculations with longer core 
expansions. 

The calculated o bond hybrid orbital contraction effects are very much in line with 
the work of Ruedenigerg [4] who has stressed the importance of intra-atomic elec- 

+ 
tronic re-arrangeme~ts in bond formation. In his work on the o bond in H 2 pamcu- 
larly, Ruedenberg has shown the contributions of both orbital contractions and over- 
lap effects. We shall present a study of the energetics of bond formation using general- 
ized hybrid orbitals :in a later publication. A study of the Jr orbital expansion effects in 
the light of Ruedenberg's work is also urgent. 

The total energy of CH20 is only very slightly improved by the hybrid orbital opti- 
mization process (0.16%) but this small absolute improvement is associated with large 
changes in electron populations. Table 4 gives the (orthogonalized hybrid basis) density 
matrix before and after exponent optimization. It is evident from Table 4 that the 
total energy of a model wave function is a poor measure of the capabilities of that 
wave function to describe the rather loosely bound valence electrons. In point of fact 
the optimization method used was one which depended on the stability of the para- 
meters being varied and on the gradients of the total energy with respect to these 
parameters - the process was terminated when the parameters ceased to change and 

the gradients were close to zero. This method thus has the incidental advantage that 
the virial theorem is satisfied to quite high accuracy by the optimized wave function 
(-0.499 compared to -0.493 for the separate-atom exponents). Tile virial theorem is, 
of course, crucial to Ruedenberg's analysis of chemical bonding. 

5. Conclusions 

A new approach to the definition and use of hybrid atomic orbitals is presented here 
which enables a deta:iled study of the energetics and electron density changes on bond 
formation to be made. Physical effects such as local charge redistributions and local 
orbital contraction effects can be studied in a natural and chemically transparent way. 
Many of these effects are very difficult to identify and study using the conventional 
AOs which are adapted to the description of systems with spherical symmetry. The 
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use of  a basis of  generalized hybr id  AOs means that  the all-important question of  opti- 

mum hybr id  basis carl be asked even in the MO model - the best set of  generalized 
hybrid orbitals for a molecule of  low symmetry cannot be generated by a linear trans- 

formation from a conventional AO set. Further,  the opt imum hybrids for (e.g.) a bent- 
bond description of  tihe double bond in C2H 4 will not  be related linearly to the opti- 
mum o/Tr hybrids and so even in the MO model the question of  "natural"  or opt imum 

hybrids has a meaningful answer. These matters will be the subject of  later publica- 
tions. 
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